EFFECTIVE ELASTIC MODULI OF THIRD-ORDER COMPOSITE MATERIALS
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Certain problems of the structural mechanics of composite materials cannot be solved
in the framework of a linear theory (for example, problems of stability and wave propagation
in prestrained inhomogeneous materials). The present paper proposes a method for calcula-
tion of macroscopic elastic moduli of the second and third orders. A microinhomogeneous
medium is investigated in the approximation of a geometrically linear theory. Estimates
of the moments of strain fields in the components are obtained by using a nonlinear formula-
tion of the effective field method [1-4]. The method rests on a solution of the problem
of binary interaction of inclusions present in the effective field. The deformations within
each inclusion are assumed to be homogeneous. The second moments of the strain fields in
the components are assumed to be uniform.

1. General Relations. In a macrovolume w with the characteristic function W, we con-
sider a mixture of elastic components whose mechanical properties are described by a geo-
metrically linear theory (under the classification of [5], it is the second variant of small
initial deformations). The strain tensor €1 is linked with the components of the displace-

ment vector uj by the relation
e = (uy,;+u,:/2,
The characteristic equation appears as
c=Le +Z¢eQ®e. (1.1)

In particular, for the Murnaghan potential

@ = (1/2) AT + pd, (a/3) AT + DA A, + (¢[3) 4, (1.2)
(A, = €ij> As = £ij€ij, Ay = €yjejkeki are the algebraic invariants of the strain tensors).
We obtain from (1.1) and (1.2) and the relation ojj = (1/2)(8/3e5; + 3/8e31)¢ the following
expressions:

Lijn = 3kN by + 20N 30 Nijer = (1/3) 6400,
NZy = Tijny — Nino Lijmn = (0imBin + 8:a8im)/2,
Liinimn = 3a8:;Nmuns + b il mnns + 8mnd ijer + 8rilmnis) + €Jijmnis
Jijmnnr = ([z'pkl[pjmn + ]ipmnlpjkl)‘,2-

A matrix with a characteristic function V, and the moduli L,;,%, contains the set X = (Vk,

L(k),S?M)) of ellipsoids vy with characteristic functions Vj, the half-axes a; the orien-
tations wk, the centers xi, and the moduli L), W .

Here and in what follows, we use the notations of tensor equations, omitting indices.
The product of tensors is assumed to be their convolution by inner indices. The direct
tensor product is denoted by the symbol ®. Standard hypotheses for microinhomogeneous media
are adopted [1-6]: All random fields are statistically homogeneous and ergodic. Thus,
the statistical averaging over an ensemble can be replaced by averaging over a characteris-
tic volume:

)y = (mes w) [ (YW, (o = (mes v)7 § (Va(ar
(. =0,1,...).
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We also use the notation <(+)|x,; x,> for the conditional average over an ensemble X under
the condition that there are inclusions at the points x, and x,, and x; # X,. The compo-
nents refer to different phases X, if at least one of the parameters g, o, L', £™ has
different values.

The equilibrium equation for a microinhomogeneous medium, disregarding mass forces,
appears as

v I(Ly + Ly(a))e(x) + (£ + Li(@)elx) @ ela)] =0, (1.3)
where V is the operation of symmetrized gradients:

Ly(z) = § Vi) (L® — L), Z,= g V@) (2" — 2,).

Equation (1.3) is nonlinear. For obtaining final results that can be visualized, we adopt

linearization of (1.3), which assumes the homogeneity of e(x) e £(x) within the phase Xy:

e(x) ® e(x) = <e(x) © e(x)>y at x € X,. We denote q(x) = (L, + L,(@))"1( &+ 2 )<e(x) o

e(x)>y, q(x) = q¢ at x € X, q,(x) = ES (q(x) — go)Vg. The rule of calculation of the
=1

piecewise constant tensor of the second rank q is described below. In our notations, (1.3)
appears as

V(Lo + L) le(@) + g()] = 0 (1.4)

Within notations, it coincides with its counterpart relation from linear theories of gas-
saturated porous media [2] and thermal elasticity [3] of microinhomogeneous media. Thus,
we can employ for solution of (1.4) the techniques of the effective field method proposed
earlier [1-3]. Specifically, with the aid of the fundamental solution G of the equation
for the equilibrium of a homogeneous linearly elastic medium with the modulus L,, we reduce
(1.4) to an integral equation for modified deformation e = & — g,

e(x) = <& +§ vvG( — y{Li(ely)— (Lo + Lim)a(y) — [KLye) — (Lo + Ly)g,) 1dy. (1.5)
Expressing (1.5) in stresses and taking into account that <o> = ¢°, we obtain
ofz) = o* + 5 Lz — yKM,(y)o(y)— aiy) — [(M0) — (g)1)dy.

Here, M, = L,"%; My + M;(x) = M, + M, (K) = (1, - Ll(k))'l at x € vy is the compliance of
the k-th inclusion; TI'(x — y) = —L,(I8(x — y) + VVG(x = y)L,); & is the &-function.
The effective moduli of the second and third orders in the relation
(o) = Ly (&) + L5 (&) @ <& (1.6)
can be found by averaging local equation (1.1):

Ly =Ly +<L,A%), L, = 21 LYFMy+ azo L LYFY, (1.7)
v= =

where £, = <Vy>; the tensors of the fourth rank A%, the sixth rank &% ,, and the eighth rank
F, define the average concentration of deformations in a component X ® x

(o = Aa (&) + F1(2) (&) ® (&) (& ® £ya = F, (1) (&) @ (e). (1.8)

2. Evaluation of Average Deformations in the Components. We fix an arbitrary realiza-
tion of the field X and examine an effective field e(x), x € vy, which contains an inclusion

e(z) = {e) + j‘ Ulx — y{V{y; 2)[L(y)ely) + (Lo + Lima(y)] — [{L.e) + (Lo 4+ Ly)g;) 1}y (2.1)
(V (y:2) =V —Vr(z), V() = h§1 Ve(®), U= VVG)-

The field X, and therefore also e, are random. In order to determine <e>, we will make
use of the hypothesis of the effective field method described in detail in [1, 2]: 1) the
field of e is homogeneous in the neighborhood of each point inclusion; 2) every n (n > 1)
inclusions exist in a generally inhomogenenous field El’_..,n of their own.
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From the homogeneous field e we can determined unequivocally a homogeneous field of
strains inside each inclusion [2]:

e(@)=An(e— Py(Ly + L") q,), A= (I + PLL{) 7Y, (2.2)
where x € vy and the constant tensor Py = — 5 U(x — y)Vi(y)dy (x € vg) is known.

We will describe the structure of a composite material by a function ¢(vp/vg) — the
conditional density of the distribution of the m-th inclusion in the region vy at a fixed
inclusion in the region vy at a fixed inclusion in the region vi. Since inclusions do not
overlap, we assume that

@ (U | Uy) = 1P(<Dm) ('1 - V};m) fkm(lrl)(mes W)—l- (2.3)

From the normalization condition <y(wyp)> = 1 in the absence of the near oder fyy(|r|) = n,,

v=1, 2, ..., if vy € X,;; n, a countable concentration of inclusions of the components

X,, is linked with the volumetric concentration &, = (4/3)7 ajajad n,; Viy' is the character-

istic function of a sphere vy,' with the center xj and the radius aMn==nﬁna;-+1naxaL

Averaging (2.1) on the set X(-|xy), by means of (2.3) and assuming hypothesis 1 of the
effective field, we obtain

(er) = <e) + E Ule — y{ULAWew) + ALy + L)@ V(y; 2)ly; 2y — KL Aey + <ALy + Lgd Ddy. (2-4)

For calculating conditional moments in (2.4), we adopt hypothesis 2 with n = 2 and the
first approximations of the solution of the problem of binary interaction of inclusions in
a homogeneous matrix [3]. By analogy with [3], we write

e=D({e) + <),
D= (1_ PRy — §<J12 (1 - Viz) fiodre dxz)—lv
F =P Rq, + S((le (1 - ng) f1201)12 %5

where Ry = Ly (E)ARTy; Vi = mesvy; Py = P(vpp')s Jip, = UR,URys T,, = UR,UA, (L, + L, (K));
{-Y»m denote the operation of averaging with respect to wg, wy, a,, and the positions x,

(2.5)

of the sphere of radius |r| = |x; — xp| with center at xp.

From (2.5) we determine the mean strain in the components of the inclusions X, (v =
1, 2, 3, ...) and the matrix X,:
ey = AD{(e) — P (Lo + L)D7'q; + qo + I},
(A =8) Dy =<e> = T& @ 4y =4D,
=

Ay = (I —<ADVY) (1 —B)7Y, E= (V).

Expressions of A% in (2.6) make it possible to determine the effective second-order
modulus L, from (1.7). Assuming equiprobable orientation of inclusions, the tensors <R>,
{J 12012, {T15)s » Ds Ly are isotropic, and

(2.6)

1212 = (3-];27 2-]%2)’ (Tih2 = (3Ti2» Qsz), 3-]}2 = 2p? (3171) (2}_’“2) {ri=s,

2712 = (2/5) [B* (3ky) (2my) + (2pna) (20e) (T¥* — P14 + 2B)] | 7 |-,
B = (ko + 4po)™, m = Bpo)™, v = (ko + 4po) [Bue(3k, -+ 4po) 177,

where for the isotropic tensor Bjjggq we adopt the notations

B = (3B, 2B%) = 3BIN' + 2B2N?,
. 3 . — —
<L‘;>Ai>_Hlag = (3% 2,), <Ly = | L,4v (o) do.
=

To obtain 3T,,*, 2T,,? we must in 2J,,2? replace (3k,, 2y;) with (3t;, 2t,) = <(L; +
L,(1))a,> llai
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3. Calculation of &1, Fu L+ So far we have assumed that q, and g, are known. How-
ever, by assumption, these tensors are dependent on the second moments of strain fields
in the components. In that case, problem (1.3) is nonlinear. For estimating constant ten-
sors gy (o =0, 1, ...) we employ the method of successive approximations from [4]:

qa(n+1) = ¢e(n) o s(n)>a(L0 + Ll(“)(x))"l(ﬁ?w+'5??xx)), qa(o) = 0. The values of <e(n) o
e(n)s are estimated by using the method of [1] for known q (n), For reducing derivations
in (1.8) we take the first iterative approximation of e(9) o €(°)>q and <€(1)>1. The cal-
culation of the second moment of <£{°) o 5(0)>u can be conducted by constructing a correla-

tion function of strain fields by using the method of [1]. If in that case the solution
of the problem of binary interaction of inclusions [1] by successive approximations takes
into account, as in (2.5), the terms of the series that decrease at infinity not faster
than J,;,, it can be demonstrated that

(e® @ &)y = (e, ® ey (2 = 0,1, ...). (3.1)
Comparing (1.8) with (2.6) and (3.1), we obtain
g-gz) — A; ® A;, 9—&1;) = A,D {LEIQO??) _ PVD—I (g(v)g-(zv) —
— LYL2 FP) + P ([(Zy + Z1) AF s — (Ly + L) ALT' 2, F )| V) +
+ [(URY [2VAF, — LALTZFP] (1 = Vi) i dm)— L' ZeF L @=01 5 v=1,2...).

Likewise, we define #{". Substituting the values of F®, #{ from (3.1) into (1.7), we find
the effective elastic modulus of the third order:

Po= D PV QA ® A5 @ An. (3.2)
a=0

This expressionis a generalization extending the corresponding relation from [6] to an arbi-
trary number of components. For two-component composite materials, (3.2) coincides within
notations with the expression in [6]. The sole difference is in specific equations for Ay¥,

i.e., in the solution of the linearly elastic problem.
Generally, the tensors Ay*, and therefore also Ly, £« are anisotropic. At an equipro-
bable orientation of the inclusions Ay*, Lx, Zsare isotropic: Ay* = (3ry, 2s4),
P wijmnnt = 050i50mnr1 + by (8ismnnt + Smnlimr + Surlind) + Cyd ismunts
Gy = > 3 [9aar% + 3baPore (3ra + 254) + cap® (Po + 250)].
a=0

by = 2 & (2311)2 (3baroc + CaPa)y Cx = ago Eata (25a)3
a=0 =

(3py = 3ry — 2s4; a,» by, cq are the components of ).

Example. Since differences in the estimates of #,on the basis of our method and the
results of [6] are connected with the solution of the linearly elastic problem of calcula-
tion of Ay*, we will make a quantitative comparison of Ay* computed by the method of condi-

¢, 70" pa - 107
72 A 36
48 - 24

7 2\ \3
24 - - 72
T T T T
o 0,7 0,2 03 04%
Fig. 2
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tional moments of [6] and by the effective field method of [1]. For rigid spherical inclu-
sions of the same size in an incompressible matrix we obtain from (2.2), (2.6), and (1.8)

95 = 25, (y/pty — 1) = 5(2 — 31E/8)* and 25 = (52 — &) (1 — &

by the method of conditional moments {curves 1 and 2 in Fig. 1, respectively; the points
represent the experimental data of [7] on the variations of the effective Newtonian visco-
sity of suspensions in response to a growth in £, replotted in the coordinates s ~ & with
the aid of (1.7)}. For spherical and flat spheroidal pores similar estimates have been
compared in [2]. TFigure 2 plots cx(£) calculated from (2.6) and (3.2) for 09G28 steel with
spherical pores of the same size and the following parameters (Pa): X, = 9.44°10'°, y, =
7.9:10'°, ay= —82.5-10*°, b, = =30.9-10%%, ¢, = =79.9-10'%, The value of cy(£) at § = 0.4
on curve 1 in Fig. 2 is greater by 207 than the estimate by the method of conditional mo-
ments [6]. We should note that for a porous medium the ratio of cs values based on (2.6)
and (3.2) to those calculated by the method of [6] is equal to the cube of s,. Therefore,
the difference in estimates of cy by (2.6) and (3.2) and by [6] will grow as k increases
and as the shape of the inclusions approaches a spheroid [2]. Indeed, for spherical pores
and k, = », we show in Fig. 2 the values of cy/[c,(1 = £)] ~ £ (curves 2 and 3) calculated
from formulas of [6] and from (2.6) and (3.2), respectively.

LITERATURE CITED

1. V. A. Buryachenko, "Correlation function of stress fields in matrix composite materi-
als," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 3 (1987).

2. V. A. Buryachenko and A. M. Lipanov, "Stress concentration on ellipsoid inclusions
and e§fective thermoelastic properties of composite materials," Prikl. Mekh., No. 11
(1986).

3. V. A. Buryachenko and A. M. Lipanov, "Equations of the mechanics of gas-saturated
porous media," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1986).

4. V. A. Buryachenko and A. M. Lipanov, "Effective characteristics of elastic physically
nonlinear composite materials,” Prikl. Mekh., No. 1 (1990).

5. A. N. Guz', Principles of Three-Dimensional Theory of the Stability of Deformable
Bodies [in Russian], Vishcha Shkola, Kiev (1986).

6. B. P. Maslov, ""Macroscopic third-order elastic moduli," Prikl. Mekh., No. 7 (1979),

7. I. W. Krieger, "Rheology of monodisperse lattices," Adv. Colloid and Interface Sci.,
3, No. 2 (1972}.

913



